skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Michael_A, Webb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Revision: This revision includes four independent trajectory values of the ensemble averages of the mean squared radii of gyration and their standard deviations, which can be used to compute statistical measures such as the standard error. This distribution provides access to 18,450 configurations of coarse-grained polymers. The data is provided as a serialized object using the `pickle' Python module and in csv format. The data was compiled using Python version 3.8.  ReferencesThe specific applications and analyses of the data are described in 1.  Jiang, S.; Webb, M.A. "Physics-Guided Neural Networks for Transferable Prediction of Polymer Properties" DataThere are seven .pickle files that contain serialized Python objects. pattern_graph_data_*_*_rg_new.pickle: squared radii of gyration distribution from MD simulation. The number indicates the molecular weight range. rg2_baseline_*_new.pickle: squared radii of gyration distribution from Gaussian chain theoretical prediction. delta_data_v0314.pickle: torch_geometric training data. UsageTo access the data in the .pickle file, users can execute the following: # LOAD SIMULATION DATADATA_DIR = "your/custom/dir/"mw = 40 # or 90, 190 MWs filename = os.path.join(DATA_DIR, f"pattern_graph_data_{mw}_{mw+20}_rg_new.pickle")with open(filename, "rb") as handle:    graph = pickle.load(handle)    label = pickle.load(handle)    desc  = pickle.load(handle)    meta  = pickle.load(handle)    mode  = pickle.load(handle)    rg2_mean   = pickle.load(handle)    rg2_std    = pickle.load(handle) ** 0.5 # var # combine asymmetric and symmetric star polymerslabel[label == 'stara'] = 'star'# combine bottlebrush and other comb polymerslabel[label == 'bottlebrush'] = 'comb'  # LOAD GAUSSIAN CHAIN THEORETICAL DATAwith open(os.path.join(DATA_DIR, f"rg2_baseline_{mw}_new.pickle"), "rb") as handle:    rg2_mean_theo = pickle.load(handle)[:, 0]    rg2_std_theo = pickle.load(handle)[:, 0] graph: NetworkX graph representations of polymers. label: Architectural classes of polymers (e.g., linear, cyclic, star, branch, comb, dendrimer). desc: Topological descriptors (optional). meta: Identifiers for unique architectures (optional). mode: Identifiers for unique chemical patterns (optional). rg2_mean: Mean squared radii of gyration from simulations. rg2_std: Corresponding standard deviation from simulations. rg2_mean_theo: Mean squared radii of gyration from theoretical models. rg2_std_theo: Corresponding standard deviation from theoretical models. Help, Suggestions, Corrections?If you need help, have suggestions, identify issues, or have corrections, please send your comments to Shengli Jiang at sj0161@princeton.edu GitHubAdditional data and code relevant for this study is additionally accessible at https://github.com/webbtheosim/gcgnn 
    more » « less